Burn Serum Increases Staphylococcus aureus Biofilm Formation via Oxidative Stress
نویسندگان
چکیده
منابع مشابه
Burn Serum Increases Staphylococcus aureus Biofilm Formation via Oxidative Stress
Staphylococcus aureus is a common pathogen isolated from burn patients that can form biofilms on burn wounds and implanted deep vein catheters, which often leads to refractory infections or even biofilm-related sepsis. As biofilm formation is usually regulated by environmental conditions, we hypothesized that serum composition may be altered after burn injury, potentially affecting the ability ...
متن کاملCigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress.
The strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such as Staphylococcus aureus are members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive component...
متن کاملDoes biofilm formation have different pathways in Staphylococcus aureus?
Objective(s): Biofilm formation is one of the most important factors in the development of infections caused by Staphylococcus aureus. In this study, the expression levels of genes responsible for biofilm formation were studied in methicillin sensitive and methicillin resistant S. aureus.Materials and Methods: A total of 100 meticillin-r...
متن کاملLipoteichoic Acid Inhibits Staphylococcus aureus Biofilm Formation
A biofilm is an aggregate of microorganisms in which cells adhere to biological or non-biological surfaces and is responsible for various infectious diseases. Infections caused by Staphylococcus aureus, including pneumonia, endocarditis, and osteomyelitis, are often associated with colonization and biofilm formation. Although lipoteichoic acid (LTA) is involved in biofilm formation, the specifi...
متن کاملAspartate inhibits Staphylococcus aureus biofilm formation.
Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Microbiology
سال: 2017
ISSN: 1664-302X
DOI: 10.3389/fmicb.2017.01191